Postagens

Tarfala Forskningsstation – Stockholm universitet | Carlos Eduardo Thompson Tarfala forskningsstation är Stockholm universitets centrum för glaciologisk, alpinsk och arktisk fältforskning. Stationen ligger i Tarfaladalen i norra Sverige, vid Kebnekaisefjällen, på cirka 1130–1135 meter över havet. Den omges av flera glaciärer (bland annat Storglaciären), alpina bergsområden och sjöar. Stationen bedriver långsiktiga mätprogram inom glaciologi, meteorologi, hydrologi, permafrost och ekosystemförändringar. Mätningarna av Storglaciärens massbalans har pågått sedan 1946, vilket gör dem till en av världens längsta sammanhängande tidsserier inom glaciologisk forskning. Tarfala är en viktig plats för klimat- och miljöforskning, både nationellt och internationellt.

Tarfala Forskningsstation – Stockholm universitet | Carlos Eduardo Thompson Tarfala forskningsstation är Stockholm universitets centrum för glaciologisk, alpinsk och arktisk fältforskning. Stationen ligger i Tarfaladalen i norra Sverige, vid Kebnekaisefjällen, på cirka 1130–1135 meter över havet. Den omges av flera glaciärer (bland annat Storglaciären), alpina bergsområden och sjöar. Stationen bedriver långsiktiga mätprogram inom glaciologi, meteorologi, hydrologi, permafrost och ekosystemförändringar. Mätningarna av Storglaciärens massbalans har pågått sedan 1946, vilket gör dem till en av världens längsta sammanhängande tidsserier inom glaciologisk forskning. Tarfala är en viktig plats för klimat- och miljöforskning, både nationellt och internationellt.  

Applications of Space Archaeology to Mars: A JPL-Based Remote Sensing Approach Carlos Eduardo Thompson #carloseduadothompson

Applications of Space Archaeology to Mars: A JPL-Based Remote Sensing Approach Carlos Eduardo Thompson #carloseduadothompson  

Space Archaeology and the Management of Terrestrial and Underwater Archaeology through Remote Sensing and LiDAR Carlos Eduardo Thompson Alves de Souza Abstract This paper examines the application of Space Archaeology, Remote Sensing, and LiDAR technologies in the detection, documentation, and management of terrestrial and underwater archaeological sites. By integrating satellite data, aerial imagery, and laser scanning, it is possible to identify buried structures, submerged landscapes, and cultural patterns with high spatial accuracy. These technologies provide essential tools for non-invasive archaeological research and for the sustainable management of cultural heritage in rapidly changing environments. 1. Introduction Archaeological research has undergone a significant transformation through the integration of geospatial technologies. Space Archaeology refers to the use of satellite platforms and aerial observation systems for the detection and analysis of archaeological features on the Earth’s surface and underwater. Remote Sensing provides multispectral and radar data that allow the identification of anomalies associated with past human activity. LiDAR (Light Detection and Ranging) complements this by generating precise topographic models capable of penetrating vegetation cover and shallow water, revealing otherwise inaccessible archaeological information. These methods contribute not only to site discovery but also to long-term monitoring and management strategies for cultural heritage preservation. 2. Materials and Methods 2.1 Remote Sensing High-resolution satellite imagery (optical, multispectral, hyperspectral, and radar) was analyzed to detect geomorphological and anthropogenic anomalies. This included the identification of ancient settlement patterns, landscape modifications, and submerged features. Data were processed using standard image enhancement and classification techniques to improve archaeological feature visibility. 2.2 LiDAR Surveys Airborne and terrestrial LiDAR systems were employed to acquire three-dimensional topographic data. Point clouds were processed to generate Digital Terrain Models (DTMs) and Digital Surface Models (DSMs). These datasets enabled the detection of buried structures, paleo-channels, and submerged landscapes, even in densely vegetated or sedimented contexts. 2.3 GIS-Based Integration All Remote Sensing and LiDAR datasets were georeferenced and integrated into a Geographic Information System (GIS). Spatial analysis tools were applied for feature extraction, pattern recognition, and predictive modeling. This integration facilitated systematic documentation, spatial correlation, and heritage management planning. 3. Applications 3.1 Terrestrial Archaeology Spaceborne and airborne datasets allowed the detection of ancient urban grids, road systems, fortifications, agricultural terraces, and other anthropogenic structures. In heavily forested regions, LiDAR proved especially effective in revealing topographic signatures hidden beneath vegetation. 3.2 Underwater Archaeology Bathymetric LiDAR and satellite-derived bathymetry were applied to identify submerged landscapes, paleoshorelines, and shipwreck sites in shallow coastal waters. These methods provide essential baselines for understanding prehistoric coastal occupation and maritime trade routes. 3.3 Cultural Heritage Management The integration of geospatial data supports the creation of digital archaeological inventories, vulnerability assessments, and monitoring systems. These tools are fundamental for designing sustainable conservation policies, especially in areas affected by urban expansion, agriculture, or climate change. 4. Discussion The combined use of Remote Sensing and LiDAR represents a paradigm shift in archaeological prospection. These methods allow for large-scale, non-invasive data acquisition and analysis, reducing the need for extensive ground surveys. However, challenges remain regarding data resolution, interpretation accuracy, and the integration of interdisciplinary datasets. Continued technological development and methodological standardization are necessary to enhance the reliability and applicability of these approaches. 5. Conclusion Space Archaeology, Remote Sensing, and LiDAR offer unprecedented opportunities for the identification, analysis, and protection of terrestrial and underwater archaeological sites. Their integration into heritage management frameworks enables more effective conservation strategies and contributes to the understanding of cultural landscapes on a regional and global scale. References (Sample structure – replace or expand with actual sources) Bewley, R. H., Crutchley, S. P., & Shell, C. A. (2005). New light on an ancient landscape: lidar survey in the Stonehenge World Heritage Site. Antiquity, 79(305), 636–647. Parcak, S. (2009). Satellite Remote Sensing for Archaeology. Routledge. Opitz, R., & Cowley, D. (2013). Interpreting Archaeological Topography: Airborne Laser Scanning, 3D Data and Ground Observation. Oxbow Books. Chase, A. F., Chase, D. Z., Weishampel, J. F., et al. (2012). Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology. PNAS, 109(32), 12916–12921.

Imagem
Space Archaeology and the Management of Terrestrial and Underwater Archaeology through Remote Sensing and LiDAR Carlos Eduardo Thompson Alves de Souza Abstract This paper examines the application of Space Archaeology, Remote Sensing, and LiDAR technologies in the detection, documentation, and management of terrestrial and underwater archaeological sites. By integrating satellite data, aerial imagery, and laser scanning, it is possible to identify buried structures, submerged landscapes, and cultural patterns with high spatial accuracy. These technologies provide essential tools for non-invasive archaeological research and for the sustainable management of cultural heritage in rapidly changing environments. 1. Introduction Archaeological research has undergone a significant transformation through the integration of geospatial technologies. Space Archaeology refers to the use of satellite platforms and aerial observation systems for the detection and analysis of archaeological feat...

Space Archaeology and the Management of Terrestrial and Underwater Archaeology through Remote Sensing and LiDAR Model: Carlos Eduardo Thompson This project explores the integration of space-based observation with advanced archaeological management techniques, applying Remote Sensing and LiDAR technologies to investigate and document both terrestrial and underwater cultural heritage sites. By combining spatial data with archaeological methodology, it seeks to reveal hidden structures, map extensive areas with precision, and develop innovative strategies for heritage preservation and research on a planetary scale. Carlos Eduardo Thompson Alves de Souza Style C.E. Thompson (stylethompson.blogspot.com) Archaeologist. Cinema Art Director. Rally Race Driver. Visual artist. Designer. Fashion Art Director. Poet. Dancer. Writer. Archaeologist, Member of the British Archaeology, European Association of Archaeologists, Russian Geographical Society, Verband der Theaterautor and UNESCO | IOC and Member of Transparency International to Combat Corruption in Culture and Education. Born: Rio de Janeiro on January 27, 1968 |

Imagem
Space Archaeology and the Management of Terrestrial and Underwater Archaeology through Remote Sensing and LiDAR Model: Carlos Eduardo Thompson This project explores the integration of space-based observation with advanced archaeological management techniques, applying Remote Sensing and LiDAR technologies to investigate and document both terrestrial and underwater cultural heritage sites. By combining spatial data with archaeological methodology, it seeks to reveal hidden structures, map extensive areas with precision, and develop innovative strategies for heritage preservation and research on a planetary scale. Carlos Eduardo Thompson Alves de Souza Style C.E. Thompson (stylethompson.blogspot.com) Archaeologist. Cinema Art Director. Rally Race Driver. Visual artist. Designer. Fashion Art Director. Poet. Dancer. Writer. Archaeologist, Member of the British Archaeology, European Association of Archaeologists, Russian Geographical Society, Verband der Theaterautor and UNESCO | IOC and Me...

Космодром Байконур — это крупнейший и старейший в мире действующий космодром, расположенный в Казахстане, на территории пустыни Казахский степи. Он был построен в 1955 году и использовался Советским Союзом для запуска первых космических аппаратов и пилотируемых миссий. Вот ключевые сведения о Байконуре: Местоположение: Южный Казахстан, около города Байконур (раньше назывался Ленинск). Площадь: примерно 6 717 км², включая стартовые площадки, жилые и административные зоны. Историческое значение: 4 октября 1957 года с Байконура был запущен спутник «Спутник-1» — первый искусственный спутник Земли. 12 апреля 1961 года — первый пилотируемый полет человека в космос: Юрий Гагарин на корабле «Восток-1». Стартовые площадки: несколько площадок для разных типов ракет, включая легендарную Р-7 (Союз). Современное использование: запуск космических аппаратов России и международных партнеров, пилотируемые миссии на МКС, спутники связи и исследования. Особенности: из-за своего размера и инфраструктуры Байконур можно назвать «городом в пустыне» — там есть жилые районы, школы, магазины, больницы для сотрудников космодрома. Если хочешь, я могу сделать короткий исторический и технический обзор Байконура в виде научного резюме, как для статьи или отчета. Это будет компактно и информативно.

Космодром Байконур — это крупнейший и старейший в мире действующий космодром, расположенный в Казахстане, на территории пустыни Казахский степи. Он был построен в 1955 году и использовался Советским Союзом для запуска первых космических аппаратов и пилотируемых миссий. Вот ключевые сведения о Байконуре: Местоположение: Южный Казахстан, около города Байконур (раньше назывался Ленинск). Площадь: примерно 6 717 км², включая стартовые площадки, жилые и административные зоны. Историческое значение: 4 октября 1957 года с Байконура был запущен спутник «Спутник-1» — первый искусственный спутник Земли. 12 апреля 1961 года — первый пилотируемый полет человека в космос: Юрий Гагарин на корабле «Восток-1». Стартовые площадки: несколько площадок для разных типов ракет, включая легендарную Р-7 (Союз). Современное использование: запуск космических аппаратов России и международных партнеров, пилотируемые миссии на МКС, спутники связи и исследования. Особенности: из-за своего размера и инфраструктуры Б...

Recepção de 1050 CJNB do Canadá e Influência de Trilhas de Plasma de Eventos Hipersônicos na Captura de Dados de Radar HF Carlos Eduardo Thompson Resumo: Este estudo aborda dois fenômenos distintos relacionados à propagação de ondas de rádio em longas distâncias. Primeiramente, foi realizada a recepção clara da emissora canadense 1050 CJNB no Cazaquistão, utilizando uma antena loop otimizada para ondas médias (MW). A recepção a uma distância tão elevada sugere condições favoráveis de reflexão ionosférica, destacando o papel da ionosfera na transmissão de sinais de rádio entre continentes. Em segundo lugar, analisa-se a influência de trilhas de plasma geradas por eventos hipersônicos na captura de dados por radares de alta frequência (HF). Observações mostram que a formação e dissipação dessas trilhas alteram significativamente a reflexão e a propagação das ondas de rádio, impactando a eficiência de sistemas de radar de longo alcance. A integração desses dois estudos ressalta a complexidade da interação entre fenômenos naturais e tecnológicos na propagação de sinais eletromagnéticos, tanto em comunicações quanto em monitoramento radar. Palavras-chave: Propagação de ondas de rádio, 1050 CJNB, antena loop, trilhas de plasma, eventos hipersônicos, radar HF, ionosfera.

Recepção de 1050 CJNB do Canadá e Influência de Trilhas de Plasma de Eventos Hipersônicos na Captura de Dados de Radar HF Carlos Eduardo Thompson Resumo: Este estudo aborda dois fenômenos distintos relacionados à propagação de ondas de rádio em longas distâncias. Primeiramente, foi realizada a recepção clara da emissora canadense 1050 CJNB no Cazaquistão , utilizando uma antena loop otimizada para ondas médias (MW). A recepção a uma distância tão elevada sugere condições favoráveis de reflexão ionosférica, destacando o papel da ionosfera na transmissão de sinais de rádio entre continentes. Em segundo lugar, analisa-se a influência de trilhas de plasma geradas por eventos hipersônicos na captura de dados por radares de alta frequência (HF) . Observações mostram que a formação e dissipação dessas trilhas alteram significativamente a reflexão e a propagação das ondas de rádio, impactando a eficiência de sistemas de radar de longo alcance. A integração desses dois estudos ressalta...